Many business workflows require extracting important fields from form-like documents (e.g. bank statements, bills of lading, purchase orders, etc.). Recent techniques for automating this task work well only when trained with large datasets. In this work we propose a novel data augmentation technique to improve performance when training data is scarce, e.g. 10-250 documents. Our technique, which we call FieldSwap, works by swapping out the key phrases of a source field with the key phrases of a target field to generate new synthetic examples of the target field for use in training. We demonstrate that this approach can yield 1-7 F1 point improvements in extraction performance.
translated by 谷歌翻译
由于其对金融服务,保险和医疗保健等许多行业的自动化业务工作流程的潜在影响,自动化信息提取的信息从格式的信息提取是一种压迫需求。关键挑战是这些业务工作流中的形式类似的文件可以在很多无限的方式下放出;因此,对此问题的良好解决方案应该概括到具有看不见的布局和语言的文档。此问题的解决方案需要对文档中的文本段和视觉提示的全面了解,这是非微不足道的。虽然自然语言处理和计算机视觉社区开始解决这个问题,但在(1)数据效率上没有大量关注(2)跨越不同文档类型和语言的能力。在本文中,我们认为,当我们只有少量标记的培训文件(〜50)时,从相当大的结构不同的较大标记的语料库中的简单转移学习方法产生高达27 f1点的改进,即在简单的训练上目标域中的小语料库。我们通过简单的多域转移学习方法改进了这一点,目前正在生产使用中,并表明这达到了8个F1点的改进。我们使数据效率至关重要,使信息提取系统能够扩展以处理数百种不同的文档类型,并且学习良好的表示对于实现这一目标是至关重要的。
translated by 谷歌翻译
Active target sensing is the task of discovering and classifying an unknown number of targets in an environment and is critical in search-and-rescue missions. This paper develops a deep reinforcement learning approach to plan informative trajectories that increase the likelihood for an uncrewed aerial vehicle (UAV) to discover missing targets. Our approach efficiently (1) explores the environment to discover new targets, (2) exploits its current belief of the target states and incorporates inaccurate sensor models for high-fidelity classification, and (3) generates dynamically feasible trajectories for an agile UAV by employing a motion primitive library. Extensive simulations on randomly generated environments show that our approach is more efficient in discovering and classifying targets than several other baselines. A unique characteristic of our approach, in contrast to heuristic informative path planning approaches, is that it is robust to varying amounts of deviations of the prior belief from the true target distribution, thereby alleviating the challenge of designing heuristics specific to the application conditions.
translated by 谷歌翻译
The tropical cyclone formation process is one of the most complex natural phenomena which is governed by various atmospheric, oceanographic, and geographic factors that varies with time and space. Despite several years of research, accurately predicting tropical cyclone formation remains a challenging task. While the existing numerical models have inherent limitations, the machine learning models fail to capture the spatial and temporal dimensions of the causal factors behind TC formation. In this study, a deep learning model has been proposed that can forecast the formation of a tropical cyclone with a lead time of up to 60 hours with high accuracy. The model uses the high-resolution reanalysis data ERA5 (ECMWF reanalysis 5th generation), and best track data IBTrACS (International Best Track Archive for Climate Stewardship) to forecast tropical cyclone formation in six ocean basins of the world. For 60 hours lead time the models achieve an accuracy in the range of 86.9% - 92.9% across the six ocean basins. The model takes about 5-15 minutes of training time depending on the ocean basin, and the amount of data used and can predict within seconds, thereby making it suitable for real-life usage.
translated by 谷歌翻译
Kernel matrices, as well as weighted graphs represented by them, are ubiquitous objects in machine learning, statistics and other related fields. The main drawback of using kernel methods (learning and inference using kernel matrices) is efficiency -- given $n$ input points, most kernel-based algorithms need to materialize the full $n \times n$ kernel matrix before performing any subsequent computation, thus incurring $\Omega(n^2)$ runtime. Breaking this quadratic barrier for various problems has therefore, been a subject of extensive research efforts. We break the quadratic barrier and obtain $\textit{subquadratic}$ time algorithms for several fundamental linear-algebraic and graph processing primitives, including approximating the top eigenvalue and eigenvector, spectral sparsification, solving linear systems, local clustering, low-rank approximation, arboricity estimation and counting weighted triangles. We build on the recent Kernel Density Estimation framework, which (after preprocessing in time subquadratic in $n$) can return estimates of row/column sums of the kernel matrix. In particular, we develop efficient reductions from $\textit{weighted vertex}$ and $\textit{weighted edge sampling}$ on kernel graphs, $\textit{simulating random walks}$ on kernel graphs, and $\textit{importance sampling}$ on matrices to Kernel Density Estimation and show that we can generate samples from these distributions in $\textit{sublinear}$ (in the support of the distribution) time. Our reductions are the central ingredient in each of our applications and we believe they may be of independent interest. We empirically demonstrate the efficacy of our algorithms on low-rank approximation (LRA) and spectral sparsification, where we observe a $\textbf{9x}$ decrease in the number of kernel evaluations over baselines for LRA and a $\textbf{41x}$ reduction in the graph size for spectral sparsification.
translated by 谷歌翻译
We have developed a model for online continual or lifelong reinforcement learning (RL) inspired on the insect brain. Our model leverages the offline training of a feature extraction and a common general policy layer to enable the convergence of RL algorithms in online settings. Sharing a common policy layer across tasks leads to positive backward transfer, where the agent continuously improved in older tasks sharing the same underlying general policy. Biologically inspired restrictions to the agent's network are key for the convergence of RL algorithms. This provides a pathway towards efficient online RL in resource-constrained scenarios.
translated by 谷歌翻译
A paper of Alsinglawi et al was recently accepted and published in Scientific Reports. In this paper, the authors aim to predict length of stay (LOS), discretized into either long (> 7 days) or short stays (< 7 days), of lung cancer patients in an ICU department using various machine learning techniques. The authors claim to achieve perfect results with an Area Under the Receiver Operating Characteristic curve (AUROC) of 100% with a Random Forest (RF) classifier with ADASYN class balancing over sampling technique, which if accurate could have significant implications for hospital management. However, we have identified several methodological flaws within the manuscript which cause the results to be overly optimistic and would have serious consequences if used in a clinical practice. Moreover, the reporting of the methodology is unclear and many important details are missing from the manuscript, which makes reproduction extremely difficult. We highlight the effect these oversights have had on the result and provide a more believable result of 88.91% AUROC when these oversights are corrected.
translated by 谷歌翻译
Recent work shows that the expressive power of Graph Neural Networks (GNNs) in distinguishing non-isomorphic graphs is exactly the same as that of the Weisfeiler-Lehman (WL) graph test. In particular, they show that the WL test can be simulated by GNNs. However, those simulations involve neural networks for the 'combine' function of size polynomial or even exponential in the number of graph nodes $n$, as well as feature vectors of length linear in $n$. We present an improved simulation of the WL test on GNNs with \emph{exponentially} lower complexity. In particular, the neural network implementing the combine function in each node has only a polylogarithmic number of parameters in $n$, and the feature vectors exchanged by the nodes of GNN consists of only $O(\log n)$ bits. We also give logarithmic lower bounds for the feature vector length and the size of the neural networks, showing the (near)-optimality of our construction.
translated by 谷歌翻译
In the era of big astronomical surveys, our ability to leverage artificial intelligence algorithms simultaneously for multiple datasets will open new avenues for scientific discovery. Unfortunately, simply training a deep neural network on images from one data domain often leads to very poor performance on any other dataset. Here we develop a Universal Domain Adaptation method DeepAstroUDA, capable of performing semi-supervised domain alignment that can be applied to datasets with different types of class overlap. Extra classes can be present in any of the two datasets, and the method can even be used in the presence of unknown classes. For the first time, we demonstrate the successful use of domain adaptation on two very different observational datasets (from SDSS and DECaLS). We show that our method is capable of bridging the gap between two astronomical surveys, and also performs well for anomaly detection and clustering of unknown data in the unlabeled dataset. We apply our model to two examples of galaxy morphology classification tasks with anomaly detection: 1) classifying spiral and elliptical galaxies with detection of merging galaxies (three classes including one unknown anomaly class); 2) a more granular problem where the classes describe more detailed morphological properties of galaxies, with the detection of gravitational lenses (ten classes including one unknown anomaly class).
translated by 谷歌翻译
经过良好策划的数据集的可用性推动了机器学习(ML)模型的成功。尽管对农业的地球观测数据的获取增加了,但仍有少数策划的标签数据集,这限制了其在训练ML模型中用于农业中的遥控模型的潜力。为此,我们介绍了一个首先的数据集,镰刀,在3个不同卫星的不同空间分辨率下具有时间序列图像,并用多个关键的裁剪参数注释,用于帕迪种植的帕迪耕种,用于泰米尔纳德邦的Cauvery Delta地区,印度。该数据集由388个独特地块的2398个季节样品组成,分布在三角洲的4个地区。该数据集涵盖了2018年1月3月2021日的时间段之间的多光谱,热和微波数据。稻田样品用4个关键的裁剪参数注释,即播种日期,移植日期,收获日期和作物收率。这是最早将生长季节(使用播种和收获日期)视为数据集的一部分的研究之一。我们还提出了一种产量预测策略,该策略使用基于观察到的生长季节以及该地区泰米尔纳德邦农业大学获得的标准季节性信息生成的时间序列数据。随之而来的绩效提高凸显了ML技术的影响,该技术利用了与特定地区的农民紧随其后的标准实践相一致的领域知识。我们在3个单独的任务上进行基准测试数据集,即作物类型,物候日期(播种,移植,收获)和产量预测,并开发了一个端到端框架,用于预测现实世界中的关键作物参数。
translated by 谷歌翻译